Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methylphenyl benzoate

B. Thimme Gowda,^a* Sabine Foro,^b Roopa Nayak^a and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 14 July 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.142; data-to-parameter ratio = 12.0.

The structure of the title compound (4MePBA), $C_{14}H_{12}O_2$, resembles those of phenyl benzoate (PBA) and 4-methoxyphenyl benzoate (4MeOPBA), with similar geometric parameters. The dihedral angle between the phenyl and benzene rings in 4MePBA is $60.17 (7)^{\circ}$, compared with the values of 55.7° for PBA and 56.42 (3)° for 4MeOPBA. The molecules in the title compound are packed with the methylphenyl rings parallel to the bc plane and the benzoyl rings perpendicular to this plane.

Related literature

For related literature, see: Adams & Morsi (1976); Gowda, Foro et al. (2007); Gowda, Kožíšek, Svoboda & Fuess (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Gowda, Nayak et al. (2007); Gowda, Svoboda & Fuess (2007); Gowda, Tokarčík et al. (2007); Nayak & Gowda (2007).

a = 8.1488 (9) Å

b = 9.052 (1) Å

c = 9.299 (1) Å

Experimental

Crystal data	
$C_{14}H_{12}O_2$ $M_r = 212.24$ Triclinic, $P\overline{1}$	

 $\alpha = 76.99 \ (2)^{\circ}$ $\beta = 68.73 \ (1)^{\circ}$ $\nu = 66.87 \ (1)^{\circ}$ V = 585.08 (11) Å³ Z = 2

Data collection

Enraf–Nonius CAD-4	2082 independent reflections
diffractometer	1903 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.049$
(North et al., 1968)	3 standard reflections
$T_{\rm min} = 0.671, T_{\rm max} = 0.773$	frequency: 120 min
3995 measured reflections	intensity decay: none

Refinement $R[F^2 > 2\sigma(F^2)] = 0.040$

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.142$	independent and constrained
S = 1.06	refinement
2082 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
174 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Data collection: CAD-4-PC Software (Enraf-Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation. Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2173).

References

Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.

Enraf-Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.

Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, 03507. Gowda, B. T., Kožíšek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil

A. 62, 91-100.

- Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.
- Gowda, B. T., Nayak, R., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63. o2968.
- Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, 03308.
- Gowda, B. T., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m2115-m2116.
- Nayak, R. & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62. In the press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Cu $K\alpha$ radiation $\mu = 0.64 \text{ mm}^{-1}$

 $0.60 \times 0.48 \times 0.40$ mm

T = 299 (2) K

supplementary materials

Acta Cryst. (2007). E63, o3563 [doi:10.1107/S1600536807034848]

4-Methylphenyl benzoate

B. T. Gowda, S. Foro, R. Nayak and H. Fuess

Comment

In the present work, as part of a study of substituent effects on the solid state structures of chemically and industrially significant compounds (Gowda, Foro *et al.*, 2007; Gowda, Kožíšek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007; Gowda, Nayak *et al.*, 2007; Gowda, Svoboda & Fuess, 2007; Gowda, Tokarčík *et al.*, 2007) the structure of 4-methylphenyl benzoate (4MePBA) has been determined. The structure of 4MePBA (Fig. 1) is similar to that of phenyl benzoate (PBA) (Adams & Morsi, 1976) and 4-methoxylphenyl benzoate (4MeOPBA) (Gowda, Foro *et al.*, 2007). The bond parameters in 4MePBA are similar to those in PBA and other benzoates. The molecules in the title compound are packed with the methylphenyl rings parallel to the *bc* plane and the benzoyl rings perpendicular to this plane (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2007). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The methyl H atoms were positioned with idealized geometry and refined using a riding model, with C—H = 0.96 Å. All other H atoms were located in a difference map and their positions refined freely [C—H = 0.93 (2)–1.01 (2) Å]. $U_{iso}(H)$ values were set equal to $1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2. Molecular packing of the title compound.

4-Methylphenyl benzoate

Crystal data	
$C_{14}H_{12}O_2$	Z = 2
$M_r = 212.24$	$F_{000} = 224$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.205 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Cu $K\alpha$ radiation $\lambda = 1.54180$ Å
a = 8.1488 (9) Å	Cell parameters from 25 reflections
b = 9.052 (1) Å	$\theta = 6.2 - 25.2^{\circ}$
c = 9.299 (1) Å	$\mu = 0.64 \text{ mm}^{-1}$
$\alpha = 76.99 \ (2)^{\circ}$	T = 299 (2) K
$\beta = 68.73 \ (1)^{\circ}$	Prism, colourless
$\gamma = 66.87 \ (1)^{\circ}$	$0.60 \times 0.48 \times 0.40 \text{ mm}$
$V = 585.08 (11) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.049$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 66.9^{\circ}$
Monochromator: graphite	$\theta_{\min} = 5.1^{\circ}$
T = 299(2) K	$h = -9 \rightarrow 8$
$\omega/2\theta$ scans	$k = -10 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	<i>l</i> = −11→11
$T_{\min} = 0.671, \ T_{\max} = 0.773$	3 standard reflections
3995 measured reflections	every 120 min
2082 independent reflections	intensity decay: none
1903 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.049$

 $wR(F^2) = 0.142$

S = 1.06

2082 reflections

174 parameters

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0629P)^2 + 0.0783P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.173 (9)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C1	0.31783 (19)	0.13239 (16)	0.74315 (17)	0.0559 (4)
C2	0.3400 (2)	0.14401 (19)	0.87892 (18)	0.0641 (4)
H2	0.275 (2)	0.092 (2)	0.978 (2)	0.077*
C3	0.4548 (2)	0.2249 (2)	0.8743 (2)	0.0678 (5)
Н3	0.476 (3)	0.230 (2)	0.965 (2)	0.081*
C4	0.5471 (2)	0.29397 (17)	0.7360 (2)	0.0664 (5)
C5	0.5191 (2)	0.28167 (19)	0.6023 (2)	0.0714 (5)
H5	0.591 (3)	0.328 (2)	0.501 (2)	0.086*
C6	0.4059 (2)	0.20075 (19)	0.60421 (19)	0.0657 (4)
H6	0.385 (2)	0.197 (2)	0.512 (2)	0.079*
C7	0.24839 (19)	-0.10521 (17)	0.77574 (17)	0.0554 (4)
C8	0.11334 (17)	-0.16976 (16)	0.76323 (15)	0.0513 (4)
C9	-0.0320 (2)	-0.07552 (19)	0.70380 (18)	0.0586 (4)
H9	-0.051 (2)	0.035 (2)	0.6694 (19)	0.070*
C10	-0.1494 (2)	-0.1426 (2)	0.6884 (2)	0.0717 (5)
H10	-0.259 (3)	-0.071 (2)	0.651 (2)	0.086*
C11	-0.1205 (3)	-0.3043 (2)	0.7315 (2)	0.0759 (5)
H11	-0.202 (3)	-0.347 (2)	0.718 (2)	0.091*
C12	0.0232 (3)	-0.3988 (2)	0.7912 (2)	0.0769 (5)
H12	0.049 (3)	-0.513 (3)	0.821 (2)	0.092*
C13	0.1401 (2)	-0.33226 (19)	0.8085 (2)	0.0665 (4)
H13	0.241 (3)	-0.397 (2)	0.852 (2)	0.080*
C14	0.6715 (3)	0.3822 (2)	0.7336 (3)	0.0987 (7)
H14A	0.7406	0.3255	0.8056	0.118*
H14B	0.5957	0.4894	0.7624	0.118*
H14C	0.7573	0.3878	0.6311	0.118*
O1	0.19668 (14)	0.05681 (12)	0.74249 (14)	0.0658 (4)
O2	0.39043 (16)	-0.18510 (13)	0.80612 (16)	0.0797 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0542 (8)	0.0488 (8)	0.0726 (9)	-0.0214 (6)	-0.0256 (6)	-0.0032 (6)
C2	0.0688 (9)	0.0665 (10)	0.0645 (9)	-0.0329 (8)	-0.0210 (7)	-0.0014 (7)
C3	0.0751 (10)	0.0653 (10)	0.0781 (10)	-0.0277 (8)	-0.0346 (8)	-0.0101 (8)
C4	0.0583 (8)	0.0481 (8)	0.0975 (12)	-0.0215 (7)	-0.0233 (8)	-0.0108 (7)
C5	0.0809 (11)	0.0580 (9)	0.0749 (10)	-0.0359 (8)	-0.0124 (8)	-0.0026(7)
C6	0.0837 (11)	0.0579 (9)	0.0645 (9)	-0.0316 (8)	-0.0279 (8)	-0.0004 (7)
C7	0.0514 (7)	0.0518 (8)	0.0671 (9)	-0.0184 (6)	-0.0232 (6)	-0.0034 (6)
C8	0.0475 (7)	0.0504 (8)	0.0579 (8)	-0.0201 (6)	-0.0150 (6)	-0.0042 (6)
C9	0.0587 (8)	0.0540 (8)	0.0702 (9)	-0.0243 (7)	-0.0262 (7)	0.0008 (6)
C10	0.0687 (10)	0.0750 (11)	0.0891 (11)	-0.0327 (8)	-0.0387 (8)	-0.0016 (8)
C11	0.0757 (11)	0.0762 (11)	0.0965 (13)	-0.0438 (9)	-0.0292 (9)	-0.0095 (9)
C12	0.0784 (11)	0.0546 (9)	0.1036 (13)	-0.0337 (8)	-0.0254 (9)	-0.0026 (8)
C13	0.0612 (9)	0.0531 (9)	0.0868 (11)	-0.0214 (7)	-0.0269 (8)	0.0009 (7)
C14	0.0816 (12)	0.0713 (12)	0.161 (2)	-0.0391 (10)	-0.0371 (12)	-0.0209 (12)
01	0.0635 (6)	0.0525 (6)	0.0964 (8)	-0.0260 (5)	-0.0406 (6)	0.0030 (5)
02	0.0681 (7)	0.0609 (7)	0.1268 (11)	-0.0191 (5)	-0.0553 (7)	-0.0029 (6)

Geometric parameters (Å, °)

C1—C2	1.370 (2)	C8—C9	1.380 (2)
C1—C6	1.372 (2)	C8—C13	1.387 (2)
C1—O1	1.4070 (16)	C9—C10	1.378 (2)
C2—C3	1.382 (2)	С9—Н9	0.947 (18)
С2—Н2	0.996 (18)	C10-C11	1.375 (3)
C3—C4	1.384 (2)	C10—H10	1.01 (2)
С3—Н3	0.93 (2)	C11—C12	1.372 (3)
C4—C5	1.378 (2)	C11—H11	0.94 (2)
C4—C14	1.509 (2)	C12—C13	1.380 (2)
C5—C6	1.379 (2)	C12—H12	0.97 (2)
С5—Н5	1.011 (19)	C13—H13	0.97 (2)
С6—Н6	0.940 (19)	C14—H14A	0.9600
C7—O2	1.1958 (17)	C14—H14B	0.9600
C7—O1	1.3524 (17)	C14—H14C	0.9600
С7—С8	1.4814 (18)		
C2C1C6	121.18 (14)	C13—C8—C7	117.90 (13)
C2-C1-O1	121.05 (13)	C10—C9—C8	120.23 (15)
C6—C1—O1	117.70 (13)	С10—С9—Н9	118.6 (10)
C1—C2—C3	118.91 (15)	С8—С9—Н9	121.1 (10)
C1—C2—H2	119.4 (10)	C11—C10—C9	119.77 (16)
С3—С2—Н2	121.7 (10)	C11-C10-H10	120.9 (11)
C2—C3—C4	121.39 (15)	C9—C10—H10	119.3 (11)
С2—С3—Н3	120.3 (12)	C12—C11—C10	120.43 (15)
С4—С3—Н3	118.3 (12)	C12—C11—H11	121.9 (12)
C5—C4—C3	117.96 (14)	C10-C11-H11	117.7 (12)

C5-C4-C14	121.49 (17)	C11—C12—C13	120.19 (16)
C3—C4—C14	120.54 (18)	C11—C12—H12	122.5 (12)
C4—C5—C6	121.57 (15)	C13—C12—H12	117.3 (12)
С4—С5—Н5	117.8 (11)	C12—C13—C8	119.63 (16)
С6—С5—Н5	120.6 (11)	C12—C13—H13	121.6 (11)
C1—C6—C5	118.99 (15)	C8—C13—H13	118.8 (11)
С1—С6—Н6	121.0 (11)	C4—C14—H14A	109.5
С5—С6—Н6	120.0 (11)	C4—C14—H14B	109.5
O2—C7—O1	122.91 (13)	H14A—C14—H14B	109.5
O2—C7—C8	125.03 (13)	C4—C14—H14C	109.5
O1—C7—C8	112.01 (11)	H14A—C14—H14C	109.5
C9—C8—C13	119.73 (13)	H14B—C14—H14C	109.5
C9—C8—C7	122.33 (13)	C7—O1—C1	117.67 (10)
C6—C1—C2—C3	-0.6 (2)	O1—C7—C8—C13	-174.01 (13)
O1—C1—C2—C3	-177.45 (13)	C13—C8—C9—C10	-0.5 (2)
C1—C2—C3—C4	0.0 (3)	C7—C8—C9—C10	177.25 (14)
C2—C3—C4—C5	0.9 (2)	C8—C9—C10—C11	-0.4 (3)
C2—C3—C4—C14	179.86 (15)	C9-C10-C11-C12	0.7 (3)
C3—C4—C5—C6	-1.2 (2)	C10-C11-C12-C13	0.0 (3)
C14—C4—C5—C6	179.82 (16)	C11—C12—C13—C8	-0.9 (3)
C2-C1-C6-C5	0.3 (2)	C9—C8—C13—C12	1.2 (3)
O1—C1—C6—C5	177.24 (13)	C7—C8—C13—C12	-176.67 (14)
C4—C5—C6—C1	0.6 (3)	O2—C7—O1—C1	0.5 (2)
02—C7—C8—C9	-169.30 (15)	C8—C7—O1—C1	-177.13 (11)
01—C7—C8—C9	8.2 (2)	C2-C1-O1-C7	-70.34 (18)
O2—C7—C8—C13	8.5 (2)	C6-C1-O1-C7	112.73 (16)

Fig. 1

